Retinal diseases are a serious global threat to human vision, and early identification is essential for effective prevention and treatment. However, current diagnostic methods rely on manual analysis of fundus images, which heavily depends on the expertise of ophthalmologists. This manual process is time-consuming and labor-intensive and can sometimes lead to missed diagnoses. With advancements in computer vision technology, several automated models have been proposed to improve diagnostic accuracy for retinal diseases and medical imaging in general. However, these methods face challenges in accurately detecting specific diseases within images due to inherent issues associated with fundus images, including inter-class similarities, intra-class variations, limited local information, insufficient contextual understanding, and class imbalances within datasets. To address these challenges, we propose a novel deep learning framework for accurate retinal disease classification. This framework is designed to achieve high accuracy in identifying various retinal diseases while overcoming inherent challenges associated with fundus images. Generally, the framework consists of three main modules. The first module is Densely Connected Multidilated Convolution Neural Network (DCM-CNN) that extracts global contextual information by effectively integrating novel Casual Dilated Dense Convolutional Blocks (CDDCBs). The second module of the framework, namely, Local-Patch-based Convolution Neural Network (LP-CNN), utilizes Class Activation Map (CAM) (obtained from DCM-CNN) to extract local and fine-grained information. To identify the correct class and minimize the error, a synergic network is utilized that takes the feature maps of both DCM-CNN and LP-CNN and connects both maps in a fully connected fashion to identify the correct class and minimize the errors. The framework is evaluated through a comprehensive set of experiments, both quantitatively and qualitatively, using two publicly available benchmark datasets: RFMiD and ODIR-5K. Our experimental results demonstrate the effectiveness of the proposed framework and achieves higher performance on RFMiD and ODIR-5K datasets compared to reference methods.
Read full abstract