The detection algorithms for water surface objects considerably assist unmanned surface vehicles in rapidly perceiving their surrounding environment, providing essential environmental information and evaluating object attributes. This study proposes a lightweight water surface target detection algorithm called YOLO-WSD (water surface detection), based on YOLOv8n, to address the need for real-time, high-precision, and lightweight target detection algorithms that can adapt to the rapid changes in the surrounding environment during specific tasks. Initially, we designed the C2F-E module, enriched in gradient flow compared to the conventional C2F module, enabling the backbone network to extract richer multi-level features while maintaining lightness. Additionally, this study redesigns the feature fusion network structure by introducing low-level features and achieving multi-level fusion to enhance the network’s capability of integrating multiple levels. Meanwhile, it investigates the impact of channel number differences in the Concat module fusion on model performance, thereby optimizing the neural network structure. Lastly, it introduces the WIOU localization loss function to bolster model robustness. Experiments demonstrated that YOLO-WSD achieves a 4.6% and 3.4% improvement in mAP0.5 on the water surface object detection dataset and Seaship public dataset, respectively, with recall rates improving by 5.4% and 8.5% relative to the baseline YOLOv8n model. The model’s parameter size is 3.3 M. YOLO-WSD exhibits superior performance compared to other mainstream lightweight algorithms.
Read full abstract