In this paper, we aim at developing a new arbitrary-oriented end-to-end object detection method to further push the frontier of object detection for remote sensing image. The proposed method comprehensively takes into account multiple strategies, such as attention mechanism, feature fusion, rotation region proposal as well as super-resolution pre-processing simultaneously to boost the performance in terms of localization and classification under the faster RCNN-like framework. Specifically, a channel attention network is integrated for selectively enhancing useful features and suppressing useless ones. Next, a dense feature fusion network is designed based on multi-scale detection framework, which fuses multiple layers of features to improve the sensitivity to small objects. In addition, considering the objects for detection are often densely arranged and appear in various orientations, we design a rotation anchor strategy to reduce the redundant detection regions. Extensive experiments on two remote sensing public datasets DOTA, NWPU VHR-10 and scene text dataset ICDAR2015 demonstrate that the proposed method can be competitive with or even superior to the state-of-the-art ones, like R2CNN and R2CNN++.