Abstract

The tough challenges of object recognition in long-distance scene involves contour shape deformation invariant features construction. In this work, an effective contour shape descriptor integrating critical points structure and Scale-invariant Heat Kernel Signature (SI-HKS) is proposed for long-distance object recognition. We firstly propose a general feature fusion model. Then, we capture the object contour structure feature with Critical-points Inner-distance Shape Context (CP-IDSC). Meanwhile, we pull-in the SI-HKS for capturing the local deformation-invariant properties of 2D shape. Based on the integration of the above two feature descriptors, the fusion descriptor is compacted by mapping into a low dimensional subspace using the bags-of-features, allowing for an efficient Bayesian classifier recognition. The extensive experiments on synthetic turbulence-degraded shapes and real-life infrared image show that the proposed method outperformed other compared approaches in terms of the recognition precision and robustness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.