Facial expression emotion identification and prediction is one of the most difficult problems in computer science. Pre-processing and feature extraction are crucial components of the more conventional methods. For the purpose of emotion identification and prediction using 2D facial expressions, this study targets the Face Expression Recognition dataset and shows the real implementation or assessment of learning algorithms such as various CNNs. Due to its vast potential in areas like artificial intelligence, emotion detection from facial expressions has become an essential requirement. Many efforts have been done on the subject since it is both a challenging and fascinating challenge in computer vision. The focus of this study is on using a convolutional neural network supplemented with data to build a facial emotion recognition system. This method may use face images to identify seven fundamental emotions, including anger, contempt, fear, happiness, neutrality, sadness, and surprise. As well as improving upon the validation accuracy of current models, a convolutional neural network that takes use of data augmentation, feature fusion, and the NCA feature selection approach may assist solve some of their drawbacks. Researchers in this area are focused on improving computer predictions by creating methods to read and codify facial expressions. With deep learning's striking success, many architectures within the framework are being used to further the method's efficacy. We highlight the contributions dealt with, the architecture and databases used, and demonstrate the development by contrasting the offered approaches and the outcomes produced. The purpose of this study is to aid and direct future researchers in the subject by reviewing relevant recent studies and offering suggestions on how to further the field. An innovative feature-based transfer learning technique is created using the pre-trained networks MobileNetV2 and DenseNet-201. The suggested system's recognition rate is 75.31%, which is a significant improvement over the results of the prior feature fusion study.
Read full abstract