Abstract
Trace element deficiency diagnosis plays a critical role in pear cultivation. However, high-quality diagnostic models are challenging to investigate, making it difficult to collect samples. Therefore, this manuscript developed a novel transfer learning method, named Tran_NAS, with a fine-tuning neural network that uses a neural architecture search (NAS) to transfer learning from nitrogen (N) and phosphorus (P) to iron (Fe) and magnesium (Mg) to diagnose pear leaf element deficiencies. The best accuracy of the transferred NAS model is 89.12%, which is 11% more than that of the model without the transfer of trace element-deficient samples. Meanwhile, Tran_NAS also has better performance on source datasets after comparing with different proportions of training sets. Finally, this manuscript summarizes the transfer model coincident characteristics, including the methods of batch normalization (BN) and dropout layers, which make the model more generalizable. This manuscript applies a symmetric homogeneous feature-based transfer learning method on NAS that is designed explicitly for near-infrared (NIR) data collected from nutrient-deficient pear leaves. The novel transfer learning method would be more effective for the micro-NIR spectrum of the nondestructive diagnosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.