The magnetic and electronic properties of the parent material CaFeAs2 of new superconductors are investigated using first-principles calculations. We predict that the ground state of CaFeAs2 is a spin-density-wave (SDW)-type striped antiferromagnet driven by Fermi surface nesting. The magnetic moment around each Fe atom is about 2.1 μB. We also present electronic and magnetic structures of electron-doped phase Ca0.75(Pr/La)0.25FeAs2, the SDW order was suppressed by La/Pr substitution. The As in arsenic layers is negative monovalent and acts as blocking layers enhancing two-dimensional character by increasing the spacing distance between the FeAs layers. This favors strong antiferromagnetic fluctuations mediated pairing, implying higher Tc in Ca0.75(Pr/La)0.25FeAs2 than Ca0.75(Pr/La)0.25Fe2As2.
Read full abstract