Soil profiles at five automobile mechanic waste dumps in Port-Harcourt, Nigeria were investigated to assess the spatial distribution, chemical speciation, and likely mobility of Cd, Cu, Pb, Zn, Cr and Ni in the soil as a function of the soil properties. A sequential fractionation protocol was used that generated six different fractions into which soil metal could partition. Cadmium was associated with non-residual fractions at surface horizons, but at lower depths it was in the residual fractions. Copper and Cr partitioned into organic and residual fractions, while Pb was associated with an Fe-Mn oxide fraction and the residual fractions. Zinc in surface horizons partitioned into an Fe-Mn oxide fraction and a fraction that captured carbonate-bound species, but in subsurface horizons, it was mainly in the residual fractions. Ni was predominantly found in the residual fractions. Mobility factors were calculated, and their values tended to decrease with increasing profile depth, indicating that these metals are relatively mobile in the surface horizons compared the subsurface except for chromium in the 15-30 cm depths. The mobility factors for the heavy metals follow the order: Cd > Zn > Pb > Cu > Cr > Ni. The results suggest that there is serious contamination hazard with Cd, Pb, and Zn in the soil profiles.
Read full abstract