Nitrosomonas europaea has a single three-gene operon (nitABC) encoding an iron ABC transporter system (NitABC). Phylogenetic analysis clustered the subunit NitB with Fe(3+)-ABC transporter permease components from other organisms. The N. europaea strain deficient in nitB (nitB::kan) grew well in either Fe-replete or Fe-limited media and in Fe-limited medium containing the catecholate-type siderophore, enterobactin or the citrate-based dihydroxamate-type siderophore, aerobactin. However, the nitB::kan mutant strain was unable to grow in Fe-limited media containing either the hydroxamate-type siderophores, ferrioxamine and ferrichrome or the mixed-chelating type siderophore, pyoverdine. Exposure of N. europaea cells to a ferrichrome analog coupled to the fluorescent moiety naphthalic diimide (Fhu-NI) led to increase in fluorescence in the wild type but not in nitB::kan mutant cells. Spheroplasts prepared from N. europaea wild type exposed to Fhu-NI analog retained the fluorescence, while spheroplasts of the nitB::kan mutant were not fluorescent. NitABC transports intact Fe(3+)-ferrichrome complex into the cytoplasm and is an atypical ABC type iron transporter for Fe(3+) bound to ferrioxamine, ferrichrome or pyoverdine siderophores into the cytoplasm. The mechanisms to transport iron in either the Fe(3+) or Fe(2+) forms or Fe(3+) associated with enterobactin or aerobactin siderophores into the cell across the cytoplasmic membrane are as yet undetermined.
Read full abstract