High-pressure gaseous hydrogen storage is an important way of hydrogen energy storage and transport at present, while high-strength steel material is one of the main materials used for hydrogen storage vessels. However, their internal doping elements and inherent defects often lead their mechanical properties to decrease, thus reducing the pressure-bearing capability and storage life of the vessel. At present, the mechanism of doping elements influencing the mechanical properties of high-strength steels is still unclear. In this work, a first-principles approach is used to study the influence of elemental doping (Cr, Mn, Mo, As, Sb, Bi, Sn, Pb) on the mechanical properties of Fe single crystals and Fe-C systems. The results show that among the above elements, Mn doping can increase the elastic modulus, bulk modulus, and shear modulus compared with those of pure Fe, while the doping by remaining elements will reduce the three moduli above, with the non-transition metal elements having a greater effect on the three moduli than the transition metal elements. Electronic structure analysis shows that the transition metal elements have better compatibility with the Fe lattice. Molecular dynamics results further show that the injection of H atoms significantly disrupts the lattice ordering of the Fe polycrystalline doped by C, Cr, and Mn elements, while the doping of Cr elements can significantly enhance the dislocation density of the system. The effects of doping elements on the mechanical properties of single-crystal and polycrystalline Fe, which are studied in this work, are of great significance in guiding the mechanistic study of the effects of doping and defects on the strength of Fe-based materials.
Read full abstract