Chemical doping is a promising scheme for sustainable development of green and economical cement manufacturing related to global energy and environmental concerns. Understanding and controlling doping effect on reactive cement components is the prerequisite. This study aims to propose effective theoretical methods to reveal the correlation between hydration reactivity of doped clinker crystals and their electronic structures. Four dominant Portland cement clinker phases with copper doping are comparatively investigated by the state-of-the-art ab initio calculation. It finds that Cu ions doped in silicate and aluminate phases shift the nucleophilic reactive sites from Ca-centered regions to defect sites by decreasing the effective charges of Ca ions, which accounts for the hydration retardation of these phases. Exceptionally, the reactive sites in ferrite phase are scarcely changed by Cu doping due to the intense band-edge localization of Fe 3d state, which implies the relatively lesser influence on hydrat...
Read full abstract