The present work aimed to biofabricate copper oxide nanoparticles (CuO NPs) using Tinospora cordifolia leaf extract. The biofabricated CuO NPs were treated against the malarial parasite of chloroquine-resistant Plasmodium falciparum (INDO) and the antilarval efficacy was evaluated against the malaria vector Anopheles stephensi and dengue vector Aedes aegypti. The prominence at 285 nm in the UV-visible spectrum helped to identify the produced CuO NPs. Based on the XRD patterns, the concentric rings correspond to reflections at 38.26° (111), 44.11° (200), 64.58° (220), and 77.34° (311). These separations are indicative of CuO's face-centered cubic (fcc) structure. The synthesized CuO NPs have FTIR spectra with band intensities of 3427, 2925, 1629, 1387, 1096, and 600 cm-1. The absorbance band at 3427 cm-1 is known to be associated with the stretching O-H due to the alcoholic group. FTIR proved that the presence of the -OH group is responsible for reducing and capping agents in the synthesis of nanoparticles (NPs). The synthesized CuO NPs were found to be polymorphic (oval, elongated, and roughly spherical) in form with a size range of 11-47 nm and an average size of 16 nm when the morphology was examined using FESEM and HRTEM. The highest antiplasmodial efficacy against the chloroquine-resistant strain of P. falciparum (INDO) was found in the synthesized CuO NPs, with LC50 values of 19.82 µg/mL, whilst HEK293 cells are the least toxic, with a CC50 value of 265.85 µg/mL, leading to a selectivity index of 13.41. However, the antiplasmodial activity of T. cordifolia leaf extract (TCLE) and copper sulfate (CS) solution showed moderate activity, with LC50 values of 52.24 and 63.88 µg/mL, respectively. The green synthesized NPs demonstrated extremely high antilarval efficacy against the larvae of An. stephensi and Ae. aegypti, with LC50 values of 4.06 and 3.69 mg/L, respectively.