PurposeTo compare the capability of CTs obtained with a silver or copper x-ray beam spectral modulation filter (Ag filter and Cu filter) and reconstructed with FBP, hybrid-type IR and deep learning reconstruction (DLR) for radiation dose reduction for lung nodule detection using a chest phantom study. Materials and methodsA chest CT phantom was scanned with a 320-detector row CT with Ag filter at 0.6, 1.6 and 2.5 mGy and Cu filters at 0.6, 1.6, 2.5 and 9.6 mGy, and reconstructed with the aforementioned methods. To compare image quality of all the CT data, SNRs and CNRs for any nodule were calculated for all protocols. To compare nodule detection capability among all protocols, the probability of detection of any nodule was assessed with a 5-point visual scoring system. Then, ROC analyses were performed to compare nodule detection capability of Ag and Cu filters for each radiation dose data with the same method and of the three methods for any radiation dose data and obtained with either filter. ResultsAt any of the doses, SNR, CNR and area under the curve for the Ag filter were significantly higher or larger than those for the Cu filter (p < 0.05). Moreover, with DLR, those values were significantly higher or larger than all the others for CTs obtained with any of the radiation doses and either filter (p < 0.05). ConclusionThe Ag filter and DLR can significantly improve image quality and nodule detection capability compared with the Cu filter and other reconstruction methods at each of radiation doses used.
Read full abstract