The inevitability of faults arises due to prolonged exposure of photovoltaic (PV) power plants to intricate environmental conditions. Therefore, fault diagnosis of PV power plants is crucial to ensure the continuity and reliability of power generation. This paper proposes a fault diagnosis method that integrates PV power prediction and an exponentially weighted moving average (EWMA) control chart. This method predicts the PV power based on meteorological factors using the adaptive particle swarm algorithm-back propagation neural network (APSO-BPNN) model and takes its error from the actual value as a control quantity for the EWMA control chart. The EWMA control chart then monitors the error values to identify fault types. Finally, it is verified by comparison with the discrete rate (DR) analysis method. The results showed that the coefficient of determination of the prediction model of the proposed method reached 0.98. Although the DR analysis can evaluate the overall performance of the inverter and identify the faults, it often fails to point out the specific location of the faults accurately. In contrast, the EWMA control chart can monitor abnormal states such as open and short circuits and accurately locate the string where the fault occurs.
Read full abstract