AbstractFast detection of motor failures is crucial for multi-rotor unmanned aerial vehicle (UAV) safety. It is well established in the literature that UAVs can adopt fault-tolerant control strategies to fly even when losing one or more rotors. We present a motor fault detection and isolation (FDI) method for multi-rotor UAVs based on an external wrench estimator and a recurrent neural network composed of long short-term memory nodes. The proposed approach considers the partial or total motor fault as an external disturbance acting on the UAV. Hence, the devised external wrench estimator trains the network to promptly understand whether the estimated wrench comes from a motor fault (also identifying the motor) or from unmodelled dynamics or external effects (i.e., wind, contacts, etc.). Training and testing have been performed in a simulation environment endowed with a physic engine, considering different UAV models operating under unknown external disturbances and unexpected motor faults. To further assess this approach’s effectiveness, we compare our method’s performance with a classical model-based technique. The collected results demonstrate the effectiveness of the proposed FDI approach.