Abstract
In this paper, a novel structured collaborative sparse dictionary learning approach is proposed to improve the monitoring performance of discriminative dictionary learning for multimode processes. The mode discriminability and data reconstruction are first balanced by decomposing the dictionary coefficients into between- and within-class parts and introducing a within-class self-expression regularization term. A weight vector of between-class coefficients is subsequently exploited for accurate mode identification of data that falls into the overlapping regions between different class distributions. Moreover, in order to pinpoint the fault variables, a scalable fault isolation method is developed which imposes a constraint of statistical control limit and introduces the ℓ1/ℓ2,0-structured sparsity regularization terms. The mode identification capability of the proposed method is proved theoretically by Theorems 1 and 2, and a lower-bound magnitude is provided by Theorem 3 for fault isolation. Finally, extensive experiments conducted in the numerical and industrial process demonstrate that our proposed method outperforms some state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.