The aim of this paper is to present a method of detection and isolation of intermittent misfiring in power switches of a three phase inverter feeding an induction machine drive. The detection and diagnosis procedure is based solely on the output currents of the inverter flowing into the machine windings. The measured currents are transformed in the two dimensional frame obtained with the Concordia transform. The data are then treated by a time-average method. The results even promising lack of accuracy mainly in the fault isolation step. To enhance the fault detection and diagnosis by the use of the information enclosed in the data, a Principal Component Analysis classifier is applied. The detection of a fault occurrence is made by a two-class classifier. The isolation is a two-step approach which uses the Linear Discriminant Analysis; the first is to identify the faulty leg with a three-class classifier and the second one discriminates the faulty power switch. Both methods are evaluated with experimental data and pattern recognition method proves its effectiveness and accuracy in the faulty leg detection and isolation.
Read full abstract