In this paper, the fault detection filter (FDF) design problem based on a dynamic event-triggered mechanism (DETM) is investigated for discrete-time systems with signal quantization and sensor nonlinearity. In order to conserve the limited network resources, a newly event-triggered mechanism with dynamic threshold is adopted to reduce the number of transmitted data through network more effectively. With the consideration of DETM, signal quantization and sensor nonlinearity, a fault detection filter is constructed to achieve the robustly asymptotic stability of established model with expected fault detection objective. In addition, by influence of DETM, external interference and quantization errors, a zonotopic residual evaluation mechanism is constructed to detect the occurring fault of plant. Finally, a practical example is provided to illustrate the effectiveness of proposed design approach.
Read full abstract