This paper presents an advanced automatic fault classification method for detecting rotating rectifier faults in brushless synchronous machines (BSMs). The proposed approach employs a multilayer perceptron (MLP) neural network to classify the operational states of the rotating rectifier, including healthy conditions and common fault types: open-diode (OD), shorted-diode (SD), and open-phase (OP). Key machine measurements, available on an ordinary basis in the industry, such as active power (P), reactive power (Q), stator voltage (U), and excitation current (Ie), are used as inputs for this model, allowing for non-invasive, real-time fault detection. This model achieved an overall classification accuracy of 93.4%, with a precision of 94.9% for fault detection and strong recall performance across multiple fault types. The neural network’s robustness is enhanced by advanced data processing techniques, including Gaussian filtering and class balancing through the synthetic minority over-sampling technique (SMOTE). Experimental testing on a modified 5-kVA BSM setup, where rectifier faults were systematically induced, was used to train the network and validate the model’s performance. This method provides a promising tool for real-time condition monitoring of BSMs, improving machine reliability and minimizing downtime in industrial applications.
Read full abstract