Biodiesel is seen as more environmentally benign than petroleum-based fuels. It is also cheaper and capable of creating cleaner energy, which has a good impact on increasing the bioeconomy. An investigation was conducted on a novel heterogeneous catalyst system utilized in the synthesis of eco-friendly biodiesel from date seed oil, a non-edible feedstock obtained through the calcination of desiccated camel manure at varying temperatures. X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) analysis, and scanning electron microscopy (SEM) were utilized to characterize this catalyst. As a result of raising the calcination temperature, the results showed that the pore size of the catalyst decreased. The biodiesel production was optimized to be 86% by using the transesterification method. The optimal reaction parameters included a catalyst with 4% loading, a molar ratio of 1:8 between date seed oil and ethanol, and a temperature of 75 °C for a reaction period of three hours. The confirmation of FAME generation was achieved by gas chromatography–mass spectrometry (GC–MS). The fuel qualities of fatty acid ethyl ester are in accordance with ASTM, suggesting that it is a suitable alternative fuel option. Utilizing biodiesel derived from waste and untamed resources to establish and execute a more sustainable and ecologically conscious energy plan is praiseworthy. The adoption and integration of green energy practices could potentially yield positive environmental outcomes, thereby fostering enhanced societal and economic development for the biodiesel sector on a broader scale.
Read full abstract