Little information is available on how nano-Fe2O3 substituted iron ions as a possible iron source impacting on algal growth and arsenate (As(V)) metabolism under dissolved organic phosphorus (DOP) (D-glucose-6-phosphate (GP)) conditions. We investigated the growth of Microcystis aeruginosa and As(V) metabolism together with their metabolites in As(V) aquatic environments with nano-Fe2O3 and GP as the sole iron and P sources, respectively. Results showed that nano-Fe2O3 showed inhibitory effects on M. aeruginosa growth and microcystin (MCs) release under GP conditions in As(V) polluted water. There was little influence on As species changes in GP media under different nano-Fe2O3 concentrations except for obvious total As (TAs) removal in 100.0 mg L−1 nano-Fe2O3 levels. As(V) metabolism dominated with As(V) biotransformation in algal cells was facilitated and arsenite (As(III)) releasing risk was relieved clearly by nano-Fe2O3 under GP conditions. The dissolved organic matter (DOM) in media exhibited more fatty acid analogs containing –CO, –CH2 =CH2, and –CH functional groups with increasing nano-Fe2O3 concentrations, but the fluorescent analogs were relatively reduced especially for the fluorescent DOM dominated by aromatic protein-like tryptophan which was significantly inhibited by nano-Fe2O3. Thus, As methylation that was facilitated in M. aeruginosa by nano-Fe2O3 in GP environments also caused more organic substances to release that absorb infrared spectra while reducing the release risks of As(III) and MCs as well as protein-containing tryptophan fractions. From 1H-NMR analysis, this might be caused by the increased metabolites of aromatic compounds, organic acid/amino acid, and carbohydrates/glucose in algal cells. The findings are vital for a better understanding of nano-Fe2O3 role-playing in As bioremediation by microalgae and the subsequent potential aquatic ecological risks.
Read full abstract