This study explores the fatigue properties of EN AW-6082-T6 aluminum alloy in the gigacycle range (106–109 cycles), using ultrasonic resonance fatigue testing at 20 kHz in a push–pull mode with a symmetric load cycle (R = −1). A custom-built ultrasonic fatigue machine, developed at TU-Varna, comprising a generator, ultrasonic train (including a high-power transducer, booster, custom-made sonotrode, and specimen), monitoring, data logging systems, and an air-cooling capability, was used for the experiments conducted. A Bezier curve sonotrode, with an amplification ratio of 1:6, was designed and produced for the test. Hourglass-shaped specimens were designed on the base of the dynamic Young’s modulus E = 71.3 GPa, determined through the impulse resonance method (ASTM E1876-01), and validated with FEM analysis for resonance length and stress amplitude. The fatigue testing revealed a fatigue strength reduction of approximately 60 MPa between 106 and 109 cycles. The percentile of failure curves based on a Cactillo–Canteli model fits well with the experimental data and gives a fatigue limit at 109 cycles σl = 104 MPa and “endurance strength” σw = 84 MPa. Surface crack initiation was consistently observed with predominately cleavage transgranular fractures in the fatigue zone. The present research highlights the utility of ultrasonic testing for examining fatigue behavior in the gigacycle regime.
Read full abstract