BackgroundAlthough previous studies have shown that intra-network abnormalities in brain functional networks are correlated with clinical/cognitive impairment in multiple sclerosis (MS), there is little information regarding the pattern of causal interactions among cognition-related resting-state networks (RSNs) in different disease stages of relapsing–remitting MS (RRMS) patients. We hypothesized that abnormalities of causal interactions among RSNs occurred in RRMS patients in the acute and remitting phases.MethodsSeventeen patients in the acute phases of RRMS, 24 patients in the remitting phases of RRMS, and 23 appropriately matched healthy controls participated in this study. First, we used group independent component analysis to extract the time courses of the spatially independent components from all the subjects. Then, the Granger causality analysis was used to investigate the causal relationships among RSNs in the spectral domain and to identify correlations with clinical indices.ResultsCompared with the patients in the acute phase of RRMS, patients in the remitting phase of RRMS showed a significantly lower expanded disability status scale, modified fatigue impact scale scores, and significantly higher paced auditory serial addition test (PASAT) scores. Compared with healthy subjects, during the acute phase, RRMS patients had significantly increased driving connectivity from the right executive control network (rECN) to the anterior salience network (aSN), and the causal coefficient was negatively correlated with the PASAT score. During the remitting phase, RRMS patients had significantly increased driving connectivity from the rECN to the aSN and from the rECN to the visuospatial network.ConclusionsTogether with the disease duration (mean disease duration < 5 years) and relatively better clinical scores than those in the acute phase, abnormal connections, such as the information flow from the rECN to the aSN and the rECN to the visuospatial network, might provide adaptive compensation in the remitting phase of RRMS.
Read full abstract