The quality of all clinical MRI is dependent on B0 homogeneity, which is optimized during the shimming part of a prescan or preparatory phase before image acquisition. The purpose of this study was to assess shimming techniques clinically employed for breast MRI across our practice, and to determine factors that correlate with higher image quality for contrast-enhanced breast MRI at 1.5T. One hundred consecutive female patients were retrospectively collected with Institutional Review Board approval. Shimming-related parameters, including shim-box placement and shimming gradient offsets were extracted from prior contrast-enhanced 3D fat-suppressed T1-weighted gradient echo image acquisitions. Three breast radiologists evaluated these images for fat saturation, breast density, overall image quality, and artifacts. Technologist experience was also evaluated for variability of shimming. Generalized linear mixed models were used to compare acquisition parameters between fat saturation. P < 0.05 was considered as statistical significance. The percentage of soft tissue inside the field of view (FOV) (ie, Tissue/FOV) in the good fat-saturation group (0.37 ± 0.06) was significantly lower (P < 0.01) than that in the poor fat-saturation group (0.39 ± 0.06). Other shimming-related parameters were found not significantly affecting the fat-saturation outcomes. Technologists with more experience tended to have less variable shimming performance than junior technologists did. The quality of clinical MRI and especially breast MRI is highly dependent on shimming. Decreasing Tissue/FOV was associated with good image quality (good fat saturation). Optimization of shimming may require manual shimming or higher-order field-correction strategies.
Read full abstract