Digital dermatitis (DD) is a bovine claw disease responsible for ulcerative lesions on the planar aspect of the hoof. DD is associated with massive herd outbreaks of lameness and influences cattle welfare and production. Early detection of DD can lead to prompt treatment and decrease lameness. Computer vision (CV) provides a unique opportunity to improve early detection. The study aims to train and compare applications for the real-time detection of DD in dairy cows. Eight CV models were trained for detection and scoring, compared using performance metrics and inference time, and the best model was automated for real-time detection using images and video. Images were collected from commercial dairy farms while facing the interdigital space on the plantar surface of the foot. Images were scored for M-stages of DD by a trained investigator using the M-stage DD classification system with distinct labels for hyperkeratosis (H) and proliferations (P). Two sets of images were compiled: the first dataset (Dataset 1) containing 1,177 M0/M4H and 1,050 M2/M2P images and the second dataset (Dataset 2) containing 240 M0, 17 M2, 51 M2P, 114 M4H, and 108 M4P images. Models were trained to detect and score DD lesions and compared for precision, recall, and mean average precision (mAP) in addition to inference time in frame per second (FPS). Seven of the nine CV models performed well compared to the ground truth of labeled images using Dataset 1. The six models, Faster R-CNN, Cascade R-CNN, YOLOv3, Tiny YOLOv3, YOLOv4, Tiny YOLOv4, and YOLOv5s achieved an mAP between 0.964 and 0.998, whereas the other two models, SSD and SSD Lite, yielded an mAP of 0.371 and 0.387 respectively. Overall, YOLOv4, Tiny YOLOv4, and YOLOv5s outperformed all other models with almost perfect precision, perfect recall, and a higher mAP. Tiny YOLOv4 outperformed all other models with respect to inference time at 333 FPS, followed by YOLOv5s at 133 FPS and YOLOv4 at 65 FPS. YOLOv4 and Tiny YOLOv4 performed better than YOLOv5s compared to the ground truth using Dataset 2. YOLOv4 and Tiny YOLOv4 yielded a similar mAP of 0.896 and 0.895, respectively. However, Tiny YOLOv4 achieved both higher precision and recall compared to YOLOv4. Finally, Tiny YOLOv4 was able to detect DD lesions on a commercial dairy farm with high performance and speed. The proposed CV tool can be used for early detection and prompt treatment of DD in dairy cows. This result is a step towards applying CV algorithms to veterinary medicine and implementing real-time DD detection on dairy farms.