Distracted driving behavior has become a leading cause of vehicle crashes. This paper proposes a data augmentation method for distracted driving detection based on the driving operation area. First, the class activation mapping method is used to show the key feature areas of driving behavior analysis, and then the driving operation areas are detected by the faster R-CNN detection model for data augmentation. Finally, the convolutional neural network classification mode is implemented and evaluated to detect the original dataset and the driving operation area dataset. The classification result achieves a 96.97% accuracy using the distracted driving dataset. The results show the necessity of driving operation area extraction in the preprocessing stage, which can effectively remove the redundant information in the images to get a higher classification accuracy rate. The method of this research can be used to detect drivers in actual application scenarios to identify dangerous driving behaviors, which helps to give early warning of unsafe driving behaviors and avoid accidents.