The global sulphur cycle has implications for human health, climate change, biogeochemistry and bioremediation. The organosulphur compounds that participate in this cycle not only represent a vast reservoir of sulphur but are also used by prokaryotes as sources of energy and/or carbon. Closely linked to the inorganic sulphur cycle, it involves the interaction of prokaryotes, eukaryotes and chemical processes. However, ecological and evolutionary studies of the conversion of organic sulphur compounds are hampered by the poor conservation of the relevant pathways and their variation even within strains of the same species. In addition, several proteins involved in the conversion of sulphonated compounds are related to proteins involved in sulphur dissimilation or turnover of other compounds. Therefore, the enzymes involved in the metabolism of organic sulphur compounds are usually not correctly annotated in public databases. To address this challenge, we have developed HMSS2, a profiled Hidden Markov Model-based tool for rapid annotation and synteny analysis of organic and inorganic sulphur cycle proteins in prokaryotic genomes. Compared to its previous version (HMS-S-S), HMSS2 includes several new features. HMM-based annotation is now supported by nonhomology criteria and covers the metabolic pathways of important organosulphur compounds, including dimethylsulphoniopropionate, taurine, isethionate, and sulphoquinovose. In addition, the calculation speed has been increased by a factor of four and the available output formats have been extended to include iTol compatible data sets, and customized sequence FASTA files.