Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride based or chloride based, as either a coolant with a solid fuel (such as fluoride salt–cooled high-temperature reactors) or as a combined coolant and fuel with the fuel dissolved in a carrier salt. For liquid-fueled MSRs, the salt can be processed online or in a batch mode to allow for removal of fission products as well as for introduction of fissile fuel and fertile materials during reactor operation. The MSR is most commonly associated with the 233U/thorium fuel cycle, as the nuclear properties of 233U combined with the online removal of parasitic absorbers enable the design of a thermal-spectrum breeder reactor. However, MSR concepts have been developed using all neutron energy spectra (thermal, intermediate, fast, and mixed-spectrum zoned concepts) and with a variety of fuels including uranium, thorium, plutonium, and minor actinides. Early MSR work was supported by a significant research and development (R&D) program that resulted in two experimental systems operating at Oak Ridge National Laboratory in the 1950s and 1960s: the Aircraft Reactor Experiment and the Molten Salt Reactor Experiment. Subsequent design studies in the 1970s focusing on thermal-spectrum thorium-fueled systems established reference concepts for two major design variants: (1) a molten salt breeder reactor (MSBR) with multiple configurations that could breed additional fissile material or maintain self-sustaining operation and (2) a denatured molten salt reactor (DMSR) with enhanced proliferation resistance. MSRs have been selected as one of the Generation IV systems, and development activity has been seen in fast-spectrum MSRs, waste-burning MSRs, and MSRs fueled with low-enriched uranium as well as in more traditional thorium fuel cycle–based MSRs. This paper provides a historical background of MSR R&D efforts, surveys and summarizes many of the recent developments, and provides analysis comparing thorium-based MSRs by way of example.
Read full abstract