We investigated a time-delayed optoelectronic oscillator (OEO) that displays a wide range of complex dynamic behavior under small time delay. The phase-space trajectory distributions in different dynamic regimes were compared which brings a new perspective on the underlying mechanism of the transition process. It was found that bifurcation is always possible no matter how small the time delay is even if the universal adiabatic approximation model is invalid. Hereby we proposed a versatile simple oscillator which has a potential capacity as memory carrier and high-dimensional state spatial mapping ability that brings 1000 times computing-efficiency improvements of reservoir computing over the large time delay one. Furthermore, we demonstrated a new approach for a tunable optoelectronic pulse generator (repetition rate at 0.2 MHz and 0.25 GHz) which depends critically on time-delayed input electrical pulse. The proposed oscillator is also a promising system for the applications of fast chaos-based communication.
Read full abstract