Video-based Point Cloud Compression enables point cloud streaming over the internet by converting dynamic 3D point clouds to 2D geometry and attribute videos, which are then compressed using 2D video codecs like H.266/VVC. However, the complex encoding process of H.266/VVC, such as the quadtree with nested multi-type tree (QTMT) partition, greatly hinders the practical application of V-PCC. To address this issue, we propose a fast CU partition method dedicated to V-PCC to accelerate the coding process. Specifically, we classify coding units (CUs) of projected images into three categories based on the occupancy map of a point cloud: unoccupied, partially occupied, and fully occupied. Subsequently, we employ either statistic-based rules or machine-learning models to manage the partition of each category. For unoccupied CUs, we terminate the partition directly; for partially occupied CUs with explicit directions, we selectively skip certain partition candidates; for the remaining CUs (partially occupied CUs with complex directions and fully occupied CUs), we train an edge-driven LightGBM model to predict the partition probability of each partition candidate automatically. Only partitions with high probabilities are retained for further Rate–Distortion (R–D) decisions. Comprehensive experiments demonstrate the superior performance of our proposed method: under the V-PCC common test conditions, our method reduces encoding time by 52% and 44% in geometry and attribute, respectively, while incurring only 0.68% (0.66%) BD-Rate loss in D1 (D2) measurements and 0.79% (luma) BD-Rate loss in attribute, significantly surpassing state-of-the-art works.