Using Cluster 4 satellite data, we examine activities of fast magnetosonic (MS) waves in the outer radiation belt near the location L=4.2 on 28 May 2005. We adopt a Gaussian distribution to fit the observed power spectral density of MS waves and find the fitting wave strength to be 245 pT. We then calculate the bounce-averaged diffusion coefficients and show that these diffusion coefficients are pronounced within a region of pitch angles about 25°–70°. By solving a 2D Fokker-Planck diffusion equation, we simulate the dynamic evolution of the electron phase space density (PSD), and demonstrate that significant increases in electron PSDs at energies of MeVs occur mainly within the aforementioned pitch-angle range over a time scale of several hours. The current results suggest that the interaction between MS waves and electrons could be an important mechanism of electron acceleration in the radiation belt.