PurposeThis paper aims to present a single-block memory-based FFT processor design with a conflict-free addressing scheme for field-programmable gate arrays FPGAs with dual-port block memories. This study aims for a single-block dual-port memory-based N-point radix-2 FFT design that uses memory locations and spending minimum clock cycle.Design/methodology/approachA new memory-based Fast Fourier Transform (FFT) design that uses a dual-port memory block is proposed. Dual-port memory allows the design to perform two memory reads and writes in a single clock cycle. This approach achieves low operational clock and smallest memory simultaneously, excluding some small overhead for exceptional address changes. The methodology is to read from while writing to a memory location, eliminating the need for excess memory and additional clock cycles.FindingsWith the minimum memory size and the simplest architecture, radix-2 FFT and single-memory block are used. The number of clock pulses spent for all FFT operations does not provide much advantage for low-point FFT operations but is important for high-point FFT operations. With the developed algorithm, N memory is used, and the number of clock pulses spent for all FFT stages is (N/2 +1)log2N for all FFT operations.Originality/valueThis is an original paper, which has simultaneously in whole or in part been submitted anywhere else.
Read full abstract