The paper proposes a new continuous-flow mixed-radix (CFMR) fast Fourier transform (FFT) processor that uses the MR (radix-4/2) algorithm and a novel in-place strategy. The existing in-place strategy supports only a fixed-radix FFT algorithm. In contrast, the proposed in-place strategy can support the MR algorithm, which allows CF FFT computations regardless of the length of FFT. The novel in-place strategy is made by interchanging storage locations of butterfly outputs. The CFMR FFT processor provides the MR algorithm, the in-place strategy, and the CF FFT computations at the same time. The CFMR FFT processor requires only two N-word memories due to the proposed in-place strategy. In addition, it uses one butterfly unit that can perform either one radix-4 butterfly or two radix-2 butterflies. The CFMR FFT processor using the 0.18 /spl mu/m SEC cell library consists of 37,000 gates excluding memories, requires only 640 clock cycles for a 512-point FFT and runs at 100 MHz. Therefore, the CFMR FFT processor can reduce hardware complexity and computation cycles compared with existing FFT processors.
Read full abstract