In this paper, we describe a new class of fast solvers for separable elliptic partial differential equations in cylindrical coordinates ( r, θ, z) with free-space radiation conditions. By combining integral equation methods in the radial variable r with Fourier methods in θ and z, we show that high-order accuracy can be achieved in both the governing potential and its derivatives. A weak singularity arises in the Fourier transform with respect to z that is handled with special purpose quadratures. We show how these solvers can be applied to the evaluation of the Coulomb collision operator in kinetic models of ionized gases.
Read full abstract