Stress corrosion cracking behavior of stainless steel 304 L was investigated in full immersion, evaporated artificial sea salt brines (ASW) at 55 °C. It was observed that brines representative of thermodynamically stable brines at lower relative humidity (40% RH, MgCl2-dominant) had a faster crack growth rate than high relative humidity brines (76% RH, NaCl-dominant). Observed crack growth rates (da/dt) under constant stress intensity (K) conditions were determined to be independent of transitioning procedure (rising K or decreasing frequency) regardless of solutions investigated for the orientation presented. Further, positive strain rates had little to no impact on the observed da/dt. The observed behavior suggests an anodic dissolution enhanced hydrogen embrittlement mechanism for SS304L in concentrated ASW environments at 55 °C. Additional explorations further examined environmental influences on da/dt. Nitrate additions to 40% ASW at 55 °C solutions were shown to decrease measured da/dt and further additions stopped measurable crack growth. After sufficient nitrate had been added to fully stifle crack growth, a temperature increase to 75 °C induced cracking again, and a subsequent decrease to 55 °C once again stopped da/dt. These tests demonstrate the importance of ascertaining both brine-specific chemical and dynamic environmental influences on da/dt.
Read full abstract