Abstract

In this study, the crack propagation behaviors in the equiaxed and equiaxed-columnar grain regions of a heat-treated laser additive manufacturing (LAM) TC11 alloy with a special bi-modal microstructure are investigated. The results indicate that the alloy presents a special bi-modal microstructure that comprises a fork-like primary α (αp) phase surrounded by a secondary α colony (αs) in the β phase matrix after the heat treatment is completed. The samples demonstrate a fast crack growth rate with larger da/dN values through the equiaxed grain sample versus across the equiaxed-columnar grain sample at low ΔK values (<13.8). The differences that are observed between the crack propagation behaviors (in the crack initiation stage) of the samples can be mostly attributed to the different size and morphology of the αp lamellae and αs colony within the grains in the equiaxed and columnar grain regions rather than the grain boundaries. The cracks prefer to grow along the α/β boundary with a smooth propagation route and a fast propagation rate in the equiaxed grain region, where the αp and α clusters have a large size. However, in the columnar grain region, small and randomly distributed αp lamellae generate a zigzag-shaped propagation path with a reduction in the da/dN value. Additionally, the change in the size of the αp lamellae in the equiaxed grains (heat affected bands, HAB) is also observed to influence the propagation behavior of the crack during the crack initiation stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.