Achieving high−efficiency and stable hydrogen evolution from water splitting is a great challenge. Herein, a facilely prepared two−dimenssional self−supported catalytic electrode with excellent stability is constructed for large−scale hydrogen production from alkaline simulated seawater. The bifunctional catalytic electrode is prepared by a fast and mild one−step of sodium borohydride etching on a nickel foam (NF) substrate without adding other additives (NF@NiBx−3h). The overpotential of the hydrogen/oxygen evolution reaction (HER/OER) in alkaline−simulated seawater at 10 mA cm−2 is 96 mV and 261 mV. At 200 mA cm−2, the NF@NiBx−3h electrode shows good stability over 7 days throughout the water splitting process due to the corrosion resistance of the NF substrate, and strong adhesion between the Ni−B active material and the substrate. This work demonstrates a novel strategy for fabricating catalytic electrodes with high−performance, low cost and excellent stability.
Read full abstract