The effects of water mist with different diameters and mass loadings on hydrogen auto-ignition in air with elevated temperatures and pressures are studied. It is shown that smaller droplets with larger mass loading are the most effective in inhibiting the auto-ignition process. Under elevated initial pressures and temperatures, the role of water mist in impacting auto-ignition is minimal, primarily because the ignition delay is substantially shorter than the droplet evaporation duration. As the initial temperature decreases, there exists a temperature value below which water mist markedly extends the ignition delay time, even escalating it by up to two orders of magnitude or causing a complete suppression of ignition. The rate of production for important radicals was analyzed. The data indicates that the evaporation of the water mist lowers the initial temperature, leading to a reduction in the rate of the temperature-sensitive fast chain branching reaction. In contrast, the third body reaction that generates HO2 is not sensitive to temperature. Meanwhile, the introduction of H2O results in an earlier activation of the third body reactions. Consequently, the production of HO2 is enhanced, emphasizing the role of subsequent slow chain propagation reactions that generate OH, thereby extending the ignition delay. By deactivating the mass transfer between two phases and introducing artificial species, it is evident that water vapor dilution and thermal effects predominantly influence the ignition delay, while its role as a direct reactant is minimal.
Read full abstract