The explosion of ultra-stripped stars in close binaries can lead to ejecta masses < 0.1 M_sun and may explain some of the recent discoveries of weak and fast optical transients. In Tauris et al. (2013), it was demonstrated that helium star companions to neutron stars (NSs) may experience mass transfer and evolve into naked ~1.5 M_sun metal cores, barely above the Chandrasekhar mass limit. Here we present a systematic investigation of the progenitor evolution leading to ultra-stripped supernovae (SNe). In particular, we examine the binary parameter space leading to electron-capture (EC SNe) and iron core-collapse SNe (Fe CCSNe), respectively, and determine the amount of helium ejected with applications to their observational classification as Type Ib or Type Ic. We mainly evolve systems where the SN progenitors are helium star donors of initial mass M_He = 2.5 - 3.5 M_sun in tight binaries with orbital periods of P_orb = 0.06 - 2.0 days, and hosting an accreting NS, but we also discuss the evolution of wider systems and of both more massive and lighter - as well as single - helium stars. In some cases we are able to follow the evolution until the onset of silicon burning, just a few days prior to the SN explosion. We find that ultra-stripped SNe are possible for both EC SNe and Fe CCSNe, and that the amount of helium ejected is correlated with P_orb - the tightest systems even having donors being stripped down to envelopes of less than 0.01 M_sun. We estimate the rise time of ultra-stripped SNe to be in the range 12 hr - 8 days, and light curve decay times between 1 and 50 days. Ultra-stripped SNe may produce NSs in the mass range 1.10 - 1.80 M_sun and are highly relevant for LIGO/VIRGO since most (possibly all) merging double NS systems have evolved through this phase. Finally, we discuss the low-velocity kicks which might be imparted on these resulting NSs at birth. [Abridged]
Read full abstract