Augmented reality smart glasses, in general, have highest requirements as compared with smart phones and watches. Its display must be of light weight (a few grams), tremendous brightness (millions of nits), low power consumption (hundreds of milliwatts), and extremely small volume (a small fraction of cubic centimeter) to allow fashionable smart glass designs that would be socially and aesthetically favored by consumers. We have been focusing on micrometer‐scale native semiconductor MicroLED integration, to create miniaturized panels and projectors, which can be seamlessly integrated into the frames of the smart glasses. Among many technical aspects of microLED displays, two key parameters will be emphasized here. First, a microLED panel must be bright and efficient at the same time, especially for red microLED panel with small pixel pitch, such as 2.5 µm. Second, a microLED technology must enable reasonable reliability at a high energy density of, such as 10 watts per square centimeter. Vertically stacked native semiconductors monolithic integration, quantum dots conversion, perovskites, etc., will be discussed, in a context of facing challenges in materials and device physics and fulfilling the two requirements. In addition, an image quality correction method on the waveguide‐microLED display module will be proposed.