Agricultural practices have created tens of millions of small artificial water bodies (“farm dams” or “agricultural ponds”) to provide water for domestic livestock worldwide. Among freshwater ecosystems, farm dams have some of the highest greenhouse gas (GHG) emissions per m2 due to fertilizer and manure run‐off boosting methane production—an extremely potent GHG. However, management strategies to mitigate the substantial emissions from millions of farm dams remain unexplored. We tested the hypothesis that installing fences to exclude livestock could reduce nutrients, improve water quality, and lower aquatic GHG emissions. We established a large‐scale experiment spanning 400 km across south‐eastern Australia where we compared unfenced (N = 33) and fenced farm dams (N = 31) within 17 livestock farms. Fenced farm dams recorded 32% less dissolved nitrogen, 39% less dissolved phosphorus, 22% more dissolved oxygen, and produced 56% less diffusive methane emissions than unfenced dams. We found no effect of farm dam management on diffusive carbon dioxide emissions and on the organic carbon in the soil. Dissolved oxygen was the most important variable explaining changes in carbon fluxes across dams, whereby doubling dissolved oxygen from 5 to 10 mg L−1 led to a 74% decrease in methane fluxes, a 124% decrease in carbon dioxide fluxes, and a 96% decrease in CO2‐eq (CH4 + CO2) fluxes. Dams with very high dissolved oxygen (>10 mg L−1) showed a switch from positive to negative CO2‐eq. (CO2 + CH4) fluxes (i.e., negative radiative balance), indicating a positive contribution to reduce atmospheric warming. Our results demonstrate that simple management actions can dramatically improve water quality and decrease methane emissions while contributing to more productive and sustainable farming.
Read full abstract