A Faraday anomalous dispersion optical filter (FADOF) could lock high-power diode lasers to atomic resonance lines with ultra-narrow bandwidth. However, the polarization sensitivity of the Faraday filter limits its applications since the standard diode module often employs polarization combination to increase pumping brightness. We proposed a polarization-insensitive mutual injection configuration to solve this problem and locked a standard polarization combined diode module to Rb D2-line. The laser bandwidth was narrowed from 4 nm to 0.005 nm (2.6 GHz, FWHM) with 38.3 W output and an external cavity efficiency of 80%. This FADOF-based polarization-insensitive external-cavity scheme would find many applications, such as high energy atomic gas laser pumping (alkali lasers, metastable rare gas lasers) and quantum optics, etc.