A generalized model for mapping the trend of the performance characteristics of a double-discharge centrifugal fan is developed based on the work by Casey and Robinson (C&R), which formulated compressor performance maps for tip-speed Mach numbers ranging from 0.4 to 2 using test data obtained from turbochargers with vaneless diffusers. The current paper focuses on low-speed applications for Mach number below 0.4. The C&R model uses four nondimensional parameters at the design condition including the flow coefficient, the work input coefficient, the tip-speed Mach number, and the polytropic efficiency, in developing a prediction model that requires limited geometrical knowledge of the centrifugal turbomachine. For the low-speed fan case, the C&R formulas are further extended to a low-speed, incompressible analysis. The effort described in this paper begins by comparing generalized results using efficiency data obtained from a series of fan measurements to that using the C&R model. For the efficiency map, the C&R model is found to heavily depend on the ratio of the flow coefficient at peak efficiency to that at the choke flow condition. Since choke flow is generally not applicable in the low-speed centrifugal fan operational environment, an alternate, but accurate estimation method based on fan free delivery derived from the fan test data is presented. Using this new estimation procedure, the modified C&R model predicts reasonably well using the double-discharge centrifugal fan data for high-flow coefficients, but fails to correlate with the data for low-flow coefficients. To address this undesirable characteristic, additional modifications to the C&R model are also presented for the fan application at low flow conditions. A Reynolds number correction is implemented in the work input prediction of the C&R model to account for low-speed test conditions. The new model provides reasonable prediction with the current fan data in both work input and pressure rise coefficients. Along with the developments for the efficiency and work input coefficient maps, the use of fan shut-off and free delivery conditions are also discussed for low-speed applications.
Read full abstract