Spectral measures of the glottal source were investigated using an excised canine larynx (CL) model for various aerodynamic and phonatory conditions. These measures included spectral harmonic difference H1-H2 and spectral slope that are highly correlated with voice quality but not reported in a systematic manner using an excised larynx model. It was hypothesized that the acoustic spectra of the glottal source were significantly influenced by the subglottal pressure, glottal adduction, and vocal fold elongation, as well as the resulting vibration pattern. CLs were prepared, mounted on the bench with and without false vocal folds, and made to oscillate with a flow of heated and humidified air. Major control parameters were subglottal pressure, adduction, and elongation. Electroglottograph, subglottal pressure, flow rate, and audio signals were analyzed using custom software. Results suggest that an increase in subglottal pressure and glottal adduction may change the energy balance between harmonics by increasing the spectral energy of the first few harmonics in an unpredictable manner. It is suggested that changes in the dynamics of vocal fold motion may be responsible for different spectral patterns. The finding that the spectral harmonics do not conform to previous findings was demonstrated through various cases. Results of this study may shed light on phonatory spectral control when the larynx is part of a complete vocal tract system.
Read full abstract