Star identification algorithms can be applied to resident space object (RSO) surveillance, which includes a large number of stars and false stars. This paper proposes an efficient, robust star identification algorithm for RSO surveillance based on a neural network. First, a feature called equal-frequency binning radial feature (EFB-RF) is proposed for guide stars, and a superficial neural network is constructed for feature classification. Then the training set is generated based on EFB-RF. Finally, the remaining stars are identified using a residual star matching method. The simulation experiment and results show that the identification rate of our algorithm can reach 99.82% under 1 pixel position noise, and it can reach 99.54% under 5% false stars. When the percentage of missing stars is 15%, it can reach 99.40%. The algorithm is verified by RSO surveillance.
Read full abstract