Abstract

Star sensors are widely used by satellites for their precise pointing accuracy. However, protons in space will cause cumulative effects and single-event transients in the imaging systems of star sensors. These effects will affect the success rate of star map recognition of star sensors. In this paper, proton irradiation experiments and field tests were carried out in turn, and three typical star recognition algorithms were used to recognize the star maps. The results showed that cumulative effects led to a decrease in the number of identifiable stars, which greatly affected the recognition success rate of the grid algorithm. Hot pixels caused by displacement damage effects increased the star centroid positioning error, leading to a decrease in the recognition success rate of the triangle algorithm and pyramid algorithm. Single-event transients produced by protons hitting the image sensor are similar to the grayscale value and shape of a star, and were recognized as “false stars”, which had a significant impact on the success rate of the three recognition algorithms. In general, the pyramid algorithm was more effective than the other two algorithms in identifying the affected star map, and the recognition success rate of the grid algorithm was significantly reduced.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call