Shortage of water required for drinking and agricultural uses is a subject with a vital importance in most arid and semi-arid regions. The area of this study is one of the semi-arid regions located in southwest of Urmieh lake, northwest of Iran, between N 37°00′, 37°15′ latitude and E 45°05′, 45°30′ longitude which is composed of Permian dolomitic limestone, limestone, and post-Jurassic granite with a very low primary porosity/permeability character. In order to delineate groundwater potential zones in this area, the study focused on identifying secondary porosity/permeability indicators such as lineaments, vegetation cover, lithology, drainage pattern, drainage density, etc. In this regard, a remote sensing and geographic information system-based methodology was selected. Landsat ETM, IRS (pan), SPOT data, digital elevation model, and digital image processing techniques such as filtering, false color composite, principal component analysis, band rationing and classification have been applied to reach the purposes. Information layers extracted for analysis and interpretation stage were then integrated with other data and modeled through the use of existing geographic information system (GIS) software and their related analytical functions. Finally, based on determined ground water favorability index for different sub zones, layers, weighting, and overlapping, a ground water potential index (GWPI) was defined which respectively was utilized to groundwater potential zoning and preparation of GWPI map of the region. Within the six different sub zones defined, two sub zones labeled with high and very good potential areas were highly recommended for further development and exploration purposes. Geophysical investigations in target areas confirm the labeled subzones. Based on the obtained results of the study, it can be concluded that remote sensing data are very useful tool to extract information of groundwater exploration. Also, application of geographic information systems to find target areas for groundwater exploration are effective to save time and cost.
Read full abstract