In the context of global climate change, shallow landslides induced by strong typhoons and the ensuing rainstorms have increased significantly in China’s eastern coastal areas. On 27 May 2022, more than 700 liquefied landslides were induced by the rain gush in Wuping County, Longyan City, Fujian Province, SE China. In light of their widespread occurrence and the severe damage caused, detailed field investigations, UAV surveys, trench observations, in situ tests, and numerical simulation are conducted in this work. The cascading landslides are classified as channelized landslides and hillslope landslides. Long-term rainfall, the influence of vegetation roots under wind load, and differences in the strength and structure of surficial soil are the dominant controlling factors. The sliding surface is localized to be the interface at a depth of 1–1.5 m between the fully weathered granite and the strongly weathered granite. Kinetic analysis of a channelized landslide shows that it is characterized by short runout, rapid velocity, and strong impact energy. The maximum velocity, impact energy, and impact force of the Laifu landslide are 29 m/s, 4221.35 J, and 2110 kPa. Effective excavation is usually impossible in this context. This work highlights the escalating issue of shallow landslides in eastern China’s coastal areas, exacerbated by climate change and extreme weather events like typhoons. By conducting comprehensive investigations and analyses, the research identifies key factors influencing landslide occurrence, such as rainfall patterns and soil characteristics. Understanding the dynamics and impact of these landslides is vital for improving risk assessment, developing effective early warning systems, and informing land management policies in this region. Further exploration concerning hydro-meteorological hazard early warning should be encouraged in this region.