Watery strata and the influence of pore water pressure cannot be ignored when calculating the deformation of existing tunnels induced by the excavation of new undercrossing tunnels. Many parameters can affect the deformation of existing tunnels during the excavation of a new undercrossing tunnel. In this work, an optimized method was developed for calculating the settlement of an existing tunnel undercrossed by a newly excavated tunnel in water-rich strata. This method includes a deterministic calculation model and a probability analysis model. Based on the constitutive behavior of the soil and the poroelasticity theory, the excess pore water pressure at the axis of the existing tunnel was obtained and used in the deterministic calculation model, which computes the deformation of the existing tunnel. In addition, we established a probability model based on Kriging metamodeling, the Latin Hypercube sampling (LHS) and Monte Carlo sampling (MCS) methods, and conducted global sensitivity analysis (GSA) and failure probability analysis. The optimized parameters can be input into the deterministic model to make more accurate predictions. The optimized method was applied in and validated by a metro project in Beijing.
Read full abstract