The total change in carbon emissions in the Bohai Rim Region (BRR) plays a guiding role in the policy formulation of carbon emission reduction in northern China. Taking the 43 cities in the BRR as an example, the spatial-temporal evolution of carbon emissions in the BRR was analyzed using kernel density estimation (KDE), map visualization, and standard deviation ellipses, and the spatial autocorrelation model was used to explore the spatial clustering of carbon emissions. On this basis, the spatial-temporal heterogeneity of the factors influencing carbon emissions is explained using a Geodetector. The results are as follows: (i) During the study period, the carbon emissions in the BRR were on the rise, the share of carbon emissions in the Beijing-Tianjin-Hebei region (BTHR) and Liaoning Province was decreasing, and the contribution of Shandong Province was gradually enhanced. The spatial distribution of carbon emissions shows a geographical pattern of "middle-high and low-outside." (ii) Carbon emissions from different regions show the characteristics of BTHR > Shandong Province > Liaoning Province. The high-value carbon emission area continues to move from the northwest of Beijing-Tianjin-Hebei to the southeast. (iii) Municipal carbon emissions showed a significant positive spatial correlation in the later part of the study. The high-high aggregation area is in Tianjin, and the low-low aggregation area is in Liaoning Province. (iv) The level of transport development contributes to carbon emissions with the highest growth rate, followed by industrial structure. There are also regional differences in the dominant influences on municipal carbon emission differences. Population size, urbanization, and economic development level are the core influencing factors of carbon emissions in the BTHR, Shandong Province, and Liaoning Province, respectively. In addition, the explanatory power of the interaction between the level of economic development and other factors on carbon emissions is at a high level.